Структурно-функциональные изменения тромбоцитов у пациентов с когнитивными нарушениями
УДК 616.155.2
Аннотация
Резюме. В настоящее время в связи с прогрессированием старения населения наблюдается увеличение распространенности когнитивных нарушений различной этиологии. Продолжается активный поиск биомаркеров, которые могут быть использо- ваны в ежедневной клинической практике для ранней диагностики, играющей ключевую роль в разработке новых методов терапии и мониторинга заболеваний, проявляющихся когнитивной дисфункцией. Тромбоциты — безъядерные форменные элементы крови, играющие важную роль в гомеостазе и функционировании эндотелия сосудов, обладают схожим проте- омным составом с нейронами, что позволяет рассматривать их в качестве перспективных кандидатов для моделирования и оценки процессов нейродегенерации. В настоящее время активно исследуются возможности использования структурных и функциональных параметров тромбоцитов для диагностики когнитивных нарушений, в частности, болезни Альцгеймера. В данном обзоре проводится анализ возможного применения основных структурно-функциональных показателей тром- боцитов в качестве биомаркеров когнитивных нарушений.
Для цитирования: Кодинцев А.Н., Волкова Л.И., Антропова И.П., Изможерова Н.В., Попов А.А., Рябинина А.В. Структурно-функциональные изменения тромбоцитов у пациентов с когнитивными нарушениями. Тромбоз, гемостаз и реология. 2022;(4):4–9.
Литература
Holinstat M. Normal platelet function. Cancer Metastasis Rev. 2017;36(2):195–8. DOI: 10.1007/s10555–017–9677-x.
Xu X.R., Zhang D., Oswald B.E. et al. Platelets are versatile cells: new discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Crit Rev Clin Lab Sci. 2016;53(6):409– 30. DOI: 10.1080/10408363.2016.1200008.
Canobbio I. Blood platelets: circulating mirrors of neurons? Res Pract Thromb Haemost. 2019;3(4):564–5. DOI: 10.1002/rth2.12254.
Van Nostrand W. E., Schmaier A. H., Farrow J. S., Cunningham D.D. Protease nexin-II (amyloid beta-protein precursor): a platelet alpha-granule protein. Sci
Canobbio I., Visconte C., Momi S. et al. Platelet amyloid precursor protein is a modulator of venous thromboembolism in mice. Blood. 2017;130(4):527–36. DOI: 10.1182/blood-2017–01–764910.
Chacón-Fernández P., Säuberli K., Colzani M. et al. Brainderived neurotrophic factor in megakaryocytes. J Biol Chem. 2016;291(19):9872–81. DOI: 10.1074/jbc.M116.720029.
Amadio P., Porro B., Sandrini L. et al. Patho-physiological role of BDNF in fibrin clotting. Sci Rep. 2019;9(1):389. DOI: 10.1038/ s41598–018–37117–1.
Vasilyeva E. F., Brusov O. S. Platelets, hemostasis and mental disorders. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova. 2019;119(11):103–108. (In Russ.). DOI: 10.17116/jnevro2019119111103.
Kopeikina E., Ponomarev E.D. The role of platelets in the stimulation of neuronal synaptic plasticity, electric activity, and oxidative phosphorylation: possibilities for new therapy of neurodegenerative diseases. Front Cell Neurosci. 2021;15:680126. DOI: 10.3389/fncel. 2021.680126.
Padmakumar M., Van Raes E., Van Geet C. et al. Blood platelet research in autism spectrum disorders: In search of biomarkers. Res Pract Thromb Haemost. 2019;3(4):566–77. DOI: 10.1002/ rth2.12239.
Reed G.L. Platelet secretory mechanisms. Semin Thromb Hemost. 2004;30(4):441–50. DOI: 10.1055/s-2004–833479.
Goubau C., Buyse G.M., Di Michele M. et al. Regulated granule trafficking in platelets and neurons: a common molecular machinery. Eur J Paediatr Neurol. 2013;17(2):117–25. DOI: 10.1016/j.ejpn.2012.08.005.
Rainesalo S., Keränen T., Saransaari P. et al. GABA and glutamate transporters are expressed in human platelets. Brain Res Mol Brain Res. 2005;141(2):161–5. DOI: 10.1016/j.molbrainres.2005.08.013.
Fleury S., Boukhatem I., Le Blanc J. et al. Tissue-specificity of antibodies raised against TrkB and p75NTR receptors; implications for platelets as models of neurodegenerative diseases. Front Immunol. 2021;12:606861. DOI: 10.3389/fimmu.2021.606861.
Pluta R., Ułamek-Kozioł M., Januszewski S. et al. Platelets, lymphocytes and erythrocytes from Alzheimer’s disease patients: the quest for blood cell-based biomarkers. Folia Neuropathol. 2018;56(1):14–20. DOI: 10.5114/fn.2018.74655.
Gowert N.S., Donner L., Chatterjee M. et al. Blood platelets in the progression of Alzheimer’s disease. PLoS One. 2014;9(2):e90523. DOI: 10.1371/journal.pone.0090523.
Donner L., Fälker K., Gremer L. et al. Platelets contribute to amyloid-β aggregation in cerebral vessels through integrin αIIbβ3-induced outside-in signaling and clusterin release. Sci Signal. 2016;9(429):ra52. DOI: 10.1126/scisignal.aaf6240.
BarbourR.,KlingK.,AndersonJ.P.etal.Redbloodcellsarethe major source of alpha-synuclein in blood. Neurodegener Dis. 2008;5(2):55–9. DOI: 10.1159/000112832.
Akingbade O.E.S., Gibson C., Kalaria R.N. et al. Platelets: peripheral biomarkers of dementia? J Alzheimers Dis. 2018;63(4):1235–59. DOI: 10.3233/JAD-180181.
Ramdane S. Lower platelet count and decreased mean platelet volume in patients with Alzheimer’s disease. Alzheimer’s & Dementia. 2019;15(7):P1350. DOI: 10.1016/j.jalz.2019.06.3853.
Dos Santos G.A.A., Pardi P.C. Biomarkers in Alzheimer’s disease: evaluation of platelets, hemoglobin and vitamin B12. Dement Neuropsychol. 2020;14(1):35–40. DOI: 10.1590/1980–57642020dn14– 010006.
Espinosa-Parrilla Y., Gonzalez-Billault C., Fuentes E. et al. Decoding the role of platelets and related microRNAs in aging and neurodegenerative disorders. Front Aging Neurosci. 2019;11:151. DOI: 10.3389/fnagi.2019.00151.
Zhao S., Zhao J., Zhang T. et al. Increased apoptosis in the platelets of patients with Alzheimer’s disease and amnestic mild cognitive impairment. Clin Neurol Neurosurg. 2016;143:46–50. DOI: 10.1016/j.clineuro. 2016.02.015.
Sun D., Wang Q., Kang J. et al. Correlation between serum platelet count and cognitive function in patients with atrial fibrillation: a cross-sectional study. Cardiol Res Pract. 2021;2021:9039610. DOI: 10.1155/2021/9039610.
Prodan C. I., Ross E. D., Stoner J. A. et al. Coated-platelet levels and progression from mild cognitive impairment to Alzheimer disease. Neurology. 2011;76(3):247–52. DOI: 10.1212/ WNL.0b013e3182074bd2.
Aliotta A., Calderara D.B., Zermatten M.G. et al. Sodium-calcium exchanger reverse mode sustains dichotomous ion fluxes required for procoagulant COAT platelet formation. Thromb Haemost. 2021;121(3):309–21. DOI: 10.1055/s-0040–171670.
Prodan C.I., Szasz R., Vincent A.S. et al. Coated-platelets retain amyloid precursor protein on their surface. Platelets. 2006;17(1):56– 60. DOI: 10.1080/09537100500181913.
Wang R.T., Jin D., Li Y. et al. Decreased mean platelet volume and platelet distribution width are associated with mild cognitive impairment and Alzheimer’s disease. J Psychiatr Res. 2013;47(5):644–9. DOI: 10.1016/j.jpsychires.2013.01.014.
Liang Q.C., Jin D., Li Y. et al. Mean platelet volume and platelet distribution width in vascular dementia and Alzheimer’s disease. Platelets. 2014;25(6):433–8. DOI: 10.3109/09537104.2013.831064.
ChenS.H., BuX.L., JinW.S. et al. Altered peripheral profile of blood cells in Alzheimer disease: a hospital-based case-control study. Medicine (Baltimore). 2017;96(21): e6843. DOI: 10.1097/ MD.0000000000006843.
Yesil Y., Kuyumcu M.E., Cankurtaran M. et al. Increased mean platelet volume (MPV) indicating the vascular risk in Alzheimer’s disease (AD). Arch Gerontol Geriatr. 2012;55(2):257–60. DOI: 10.1016/j.archger.2011.09.016.
Koç E.R., Uzar E., Çirak Y. et al. The increase of mean platelet volume in patients with Alzheimer disease. Turk J Med Sci. 2014;44(6):1060–6. DOI: 10.3906/sag-1212–5.
Dong X., Nao J., Shi J. et al. Predictive value of routine peripheral blood biomarkers in Alzheimer’s disease. Front Aging Neurosci. 2019;11:332. DOI: 10.3389/fnagi.2019.00332.
Stellos K., Panagiota V., Kögel A. et al. Predictive value of platelet activation for the rate of cognitive decline in Alzheimer’s disease patients. J Cereb Blood Flow Metab. 2010;30(11):1817–20. DOI: 10.1038/jcbfm.2010.140.
Stellos K., Katsiki N., Tatsidou P. et al. Association of platelet activation with vascular cognitive impairment: implications in dementia development? Curr Vasc Pharmacol. 2014;12(1):152–4. DOI: 10.2174/157016111201140327164641.
Cho K., Kim J., Kim G.W. Changes in blood factors and ultrasound findings in mild cognitive impairment and dementia. Front Aging Neurosci. 2017;9:427. DOI: 10.3389/fnagi.2017.00427.
Kuriyama N., Mizuno T., Yasuike H. et al. CD62-mediated activation of platelets in cerebral white matter lesions in patients with cognitive decline. Arch Gerontol Geriatr. 2016;62:118–24. DOI: 10.1016/j.archger.2015.09.001.
Järemo P., Milovanovic M., Buller C. et al. P-selectin paradox and dementia of the Alzheimer type: circulating P-selectin is increased but platelet-bound P-selectin after agonist provocation is compromised. Scand J Clin Lab Invest. 2013;73(2):170–4. DOI: 10.3109/00365513.2013.764572.
Bélanger J.C., Bouchard V., Le Blanc J. et al. Brain-derived neurotrophic factor mitigates the association between platelet dysfunction and cognitive impairment. Front Cardiovasc Med. 2021;8:739045. DOI: 10.3389/fcvm.2021.739045.
Ключевые слова
тромбоциты, биомаркеры, болезнь Альцгеймера, когнитивные нарушения