Роль нейтрофилов в развитии тромбоза при антифосфолипидном синдроме и болезни Бехчета

УДК 616.72-002.77-07

  • Камила Сериковна Нурбаева ФГБНУ «Научно-исследовательский институт ревматологии имени В.А. Насоновой»; Россия, 115522 Москва, Каширское шоссе, 34А; ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Министерства здравоохранения Российской Федерации; Россия, 125993 Москва, ул. Баррикадная, 2/1, стр. 1; https://orcid.org/0000-0001-6685-7670
  • Татьяна Магомедалиевна Решетняк ФГБНУ «Научно-исследовательский институт ревматологии имени В.А. Насоновой»; Россия, 115522 Москва, Каширское шоссе, 34А; ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Министерства здравоохранения Российской Федерации; Россия, 125993 Москва, ул. Баррикадная, 2/1, стр. 1; https://orcid.org/0000-0003-3552-2522
  • Татьяна Андреевна Лисицына ФГБНУ «Научно-исследовательский институт ревматологии имени В.А. Насоновой»; Россия, 115522 Москва, Каширское шоссе, 34А; https://orcid.org/0000-0001-9437-406X
  • Александр Михайлович Лила ФГБНУ «Научно-исследовательский институт ревматологии имени В.А. Насоновой»; Россия, 115522 Москва, Каширское шоссе, 34А; ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Министерства здравоохранения Российской Федерации; Россия, 125993 Москва, ул. Баррикадная, 2/1, стр. 1; https://orcid.org/0000-0002-6068-3080
  • Евгений Львович Насонов ФГБНУ «Научно-исследовательский институт ревматологии имени В.А. Насоновой»; Россия, 115522 Москва, Каширское шоссе, 34А; ФГАОУ ВО Первый Московский государственный медицинский университет имени И.М. Сеченова Министерства здравоохранения Российской Федерации (Сеченовский Университет); Россия, 119991 Москва, ул. Трубецкая, 8, стр. 2 https://orcid.org/0000-0002-1598-8360
Ключевые слова: нейтрофилы, нетоз, тромбоз, антифосфолипидный синдром, АФС, болезнь Бехчета

Аннотация

Резюме. Нейтрофилы — это клетки врожденной иммунной системы, которые длительное время рассматривались только как первая линия защиты организма от чужеродных веществ. С открытием способности нейтрофилов к образованию внеклеточных ловушек (англ. neutrophil extracellular traps, NETs) в процессе нетоза (формирования NETs) расширилось представление о вкладе нейтрофилов в развитие патологии человека. В настоящее время гиперактивация нейтрофилов с повышенным высвобождением NETs рассматривается как важный механизм в патогенезе многих воспалительных, ауто- иммунных заболеваний, а также тромбозов. Болезнь Бехчета и антифосфолипидный синдром (АФС) — модели хронической тромбовоспалительной патологии. В обзоре представлены современные представления о вкладе нетоза в развитие гиперкоагуляции, тромбозов при болезни Бехчета и АФС.

Для цитирования: Нурбаева К.С., Решетняк Т.М., Лисицына Т.А., Лила А.М., Насонов Е.Л. Роль нейтрофилов в развитии тромбоза при антифосфолипидном синдроме и болезни Бехчета. Тромбоз, гемостаз и реология. 2023;(2):46–58.

Литература

  1. Чельдиева Ф.А., Решетняк Т.М. Ревматоидный артрит: некоторые компоненты гемостаза и воспаление. Современная ревматология. 2019;13(3):87–94. DOI: 10.14412/1996-7012-2019-3-87-94.
  2. Sira J., Eyre L. Physiology of haemostasis. Anaesthesia and Intensive Care Medicine. 2016;17(2):79–82. DOI: 10.1016/j.mpaic.2015.11.004.
  3. Hoffman M., Monroe D.M. A cell-based model of hemostasis. Thromb Haemost. 2001;85(6):958–65.
  4. Решетняк В.И., Журавель С.В., Кузнецова Н.К. и др. Система гемостаза в норме и при трансплантации печени (обзор). Общая реаниматология. 2018;14(5):58–84. DOI: 10.15360/18139779-2018-5-58-84.
  5. Aksu K., Donmez A., Keser G. Inflammation-induced thrombosis: mechanisms, disease associations and management. Curr Pharm Des. 2012;18(11):1478–93. DOI: 10.2174/138161212799504731.
  6. Насонов Е.Л., Бекетова Т.В., Решетняк Т.М. и др. Коронавирусная болезнь 2019 (COVID-19) и иммуновоспалительные ревматические заболевания: на перекрестке проблем тромбовоспаления и аутоиммунитета. Научно-практическая ревматология. 2020;58(4):353–67. DOI: 10.47360/1995-4484-202 0-353-367.
  7. Раденска-Лоповок С.Г., Решетняк Т.М. Патология сосудов при антифосфолипидном синдроме. Архив патологии. 2002;64(1):54–7.
  8. Stark K., Massberg S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat Rev Cardiol. 2021;18(9):666– 82. DOI: 10.1038/s41569-021-00552-1.
  9. Brinkmann V., Reichard U., Goosmann C. et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5. DOI: 10.1126/science.1092385.
  10. GraysonP.C., KaplanM.J.At the bench: Neutrophil extracellular traps (NETs) highlight novel aspects of innate immune system involvement in autoimmune diseases. J Leukoc Biol. 2016;99(2):253–64. DOI: 10.1189/jlb.5BT0615-247R.
  11. Jordan R.E., Nelson R.M., Kilpatrick J. et al. Inactivation of human antithrombin by neutrophil elastase. Kinetics of the heparindependent reaction. J Biol Chem. 1989;264(18):10493–500.
  12. Petersen L.C., Bjørn S.E., Nordfang O. Effect of leukocyte proteinases on tissue factor pathway inhibitor. Thromb Haemost. 1992;67(5):537–41.
  13. Oehmcke S., Mörgelin M., Herwald H. Activation of the human contact system on neutrophil extracellular traps. J Innate Immun. 2009;1(3):225–30. DOI: 10.1159/000203700.
  14. Fuchs T.A., Brill A., Duerschmied D. et.al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A. 2010;107(36):15880– 5. DOI: 10.1073/pnas.1005743107.
  15. Semeraro F., Ammollo C.T., Morrissey J.H. et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. 2011;118(7):1952–61. DOI: 10.1182/blood-2011-03-343061.
  16. Ammollo C. T., Semeraro F., Xu J. et al. Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J Thromb Haemost. 2011;9(9):1795–803. DOI: 10.1111/j.1538-7836.2011.04422.x.
  17. Elaskalani O., Abdol Razak N.B., Metharom P. Neutrophil extracellular traps induce aggregation of washed human platelets independently of extracellular DNA and histones. Cell Commun Signal. 2018;16(1):24. DOI: 10.1186/s12964-018-0235-0.
  18. Seif K., Alidzanovic L., Tischler B. et al. Neutrophil-mediated proteolysis of thrombospondin-1 promotes platelet adhesion and string formation. Thromb Haemost. 2018;118(12):2074–85. DOI: 10.1055/s-0038-1675229.
  19. Wang Y., Luo L., Braun O.Ö. et al. Neutrophil extracellular trapmicroparticle complexes enhance thrombin generation via the intrinsic pathway of coagulation in mice. Sci Rep. 2018;8(1):4020. DOI: 10.1038/s41598-018-22156-5.
  20. Noubouossie D.F., Whelihan M.F., Yu Y.B. et al. In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps. Blood. 2017;129(8):1021–9. DOI: 10.1182/blood-2016-06-722298.
  21. Sambrano G.R., Huang W., Faruqi T. et al. Cathepsin G activates protease-activated receptor-4 in human platelets. J Biol Chem. 2000;275(10):6819–23. DOI: 10.1074/jbc.275.10.6819.
  22. Reyes-García A.M.L., Aroca A., Arroyo A.B. et al. Neutrophil extracellular trap components increase the expression of coagulation factors. Biomed Rep. 2019;10(3):195–201. DOI: 10.3892/br.2019.1187.
  23. Kambas K., Chrysanthopoulou A., Vassilopoulos D. et al. Tissue factor expression in neutrophil extracellular traps and neutrophil derived microparticles in antineutrophil cytoplasmic antibody associated vasculitis may promote thromboinflammation and the thrombophilic state associated with the disease. Ann Rheum Dis. 2014;73(10):1854–63. DOI: 10.1136/annrheumdis-2013-203430.
  24. Stakos D. A., Kambas K., Konstantinidis T. et al. Expression of functional tissue factor by neutrophil extracellular traps in culprit artery of acute myocardial infarction. Eur Heart J. 2015;36(22):1405–14. DOI: 10.1093/eurheartj/ehv007.
  25. Egorina E.M., Sovershaev M.A., Olsen J.O., Østerud B. Granulocytes do not express but acquire monocyte-derived tissue factor in whole blood: evidence for a direct transfer. Blood. 2008;111(3):1208– 16. DOI: 10.1182/blood-2007-08-107698.
  26. Brill A., Fuchs T.A., Savchenko A.S. et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost. 2012;10(1):136–44. DOI: 10.1111/j.1538-7836.2011.04544.x.
  27. MartinodK.,DemersM.,FuchsT.A.etal.Neutrophilhistonemodification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc Natl Acad Sci U S A. 2013;110(21):8674– 9. DOI: 10.1073/pnas.1301059110.
  28. Nakazawa D., Tomaru U., Yamamoto C. et al. Abundant neutrophil extracellular traps in thrombus of patient with microscopic polyangiitis. Front Immunol. 2012;3:333. DOI: 10.3389/fimmu.2012.00333.
  29. Diaz J.A., Fuchs T.A., Jackson T.O. et al. Plasma DNA is elevated in patients with deep vein thrombosis. J Vasc Surg Venous Lymphat Disord. 2013;1(4):341–348.e1. DOI: 10.1016/j.jvsv.2012.12.002.
  30. van MontfoortM.L., StephanF., LauwM.N. et al. Circulating nucleosomes and neutrophil activation as risk factors for deep vein thrombosis. Arterioscler Thromb Vasc Biol. 2013;33(1):147–51. DOI: 10.1161/ATVBAHA.112.300498.
  31. Savchenko A.S., Martinod K., Seidman M.A. et al. Neutrophil extracellular traps form predominantly during the organizing stage of human venous thromboembolism development. J Thromb Haemost. 2014;12(6):860–70. DOI: 10.1111/jth.12571.
  32. Chrysanthopoulou A., Mitroulis I., Apostolidou E. et al. Neutrophil extracellular traps promote differentiation and function of fibroblasts. J Pathol. 2014;233(3):294–307. DOI: 10.1002/path.4359.
  33. de Boer O.J., Li X., Teeling P. et al. Neutrophils, neutrophil extracellular traps and interleukin-17 associate with the organisation of thrombi in acute myocardial infarction. Thromb Haemost. 2013;109(2):290–7. DOI: 10.1160/TH12-06-0425.
  34. Döring Y., Soehnlein O., Weber C. Neutrophil extracellular traps in atherosclerosis and atherothrombosis. Circ Res. 2017;120(4):736– 43. DOI: 10.1161/CIRCRESAHA.116.309692.
  35. Megens R.T., Vijayan S., Lievens D. et al. Presence of luminal neutrophil extracellular traps in atherosclerosis. Thromb Haemost. 2012;107(3):597–8. DOI: 10.1160/TH11-09-0650.
  36. Warnatsch A., Ioannou M., Wang Q., Papayannopoulos V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science. 2015;349(6245):316– 20. DOI: 10.1126/science.aaa8064.
  37. Zhang R., Brennan M.L., Fu X. et al. Association between myeloperoxidase levels and risk of coronary artery disease. JAMA. 2001;286(17):2136–42. DOI: 10.1001/jama.286.17.2136.
  38. Borissoff J.I., Joosen I.A., Versteylen M.O. et al. Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler Thromb Vasc Biol. 2013;33(8):2032–40. DOI: 10.1161/ATVBAHA.113.301627.
  39. Maugeri N., Campana L., Gavina M. et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost. 2014;12(12):2074–88. DOI: 10.1111/jth.12710.
  40. Mangold A., Alias S., Scherz T. et al. Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size. Circ Res. 2015;116(7):1182–92. DOI: 10.1161/CIRCRESAHA.116.304944.
  41. Farkas Á. Z., Farkas V. J., Gubucz I. et al. Neutrophil extracellular traps in thrombi retrieved during interventional treatment of ischemic arterial diseases. Thromb Res. 2019;175:46–52. DOI: 10.1016/j.thromres.2019.01.006.
  42. De Meyer S.F., Suidan G.L., Fuchs T.A. et al. Extracellular chromatin is an important mediator of ischemic stroke in mice. Arterioscler Thromb Vasc Biol. 2012;32(8):1884–91. DOI: 10.1161/ATVBAHA.112.250993.
  43. Laridan E., Denorme F., Desender L. et al. Neutrophil extracellular traps in ischemic stroke thrombi. Ann Neurol. 2017;82(2):223– 32. DOI: 10.1002/ana.24993.
  44. Лисицына Т.А., Алекберова З.С., Голоева Р.Г., Давыдова Г.А. Болезнь Бехчета: клинические проявления, современные принципы диагностики и терапии. Научно-практическая ревматология. 2019;57(5):553–63. DOI: 10.14412/1995-4484-20 19-553-563.
  45. Becatti M., Emmi G., Bettiol A. et al. Behçet’s syndrome as a tool to dissect the mechanisms of thrombo-inflammation: clinical and pathogenetic aspects. Clin Exp Immunol. 2019;195(3):322–33. DOI: 10.1111/cei.13243.
  46. Голоева Р.Г., Алекберова З.С., Мач Е.С. и др. Сосудистые проявления болезни Бехчета. Научно-практическая ревматология. 2010;48(2):51–8. DOI: 10.14412/1995-4484-2010-1417.
  47. Нурбаева К.С., Лисицына Т.А., Лила А.М., Решетняк Т.М. Роль нейтрофилов в патогенезе болезни Бехчета. Современная ревматология. 2022;16(4):74–9. DOI:10.14412/1996-7012-2022-4-7 4-79.
  48. PerazzioS.F., Soeiro-PereiraP.V., Dos SantosV.C. et al. Soluble CD40L is associated with increased oxidative burst and neutrophil extracellular trap release in Behcet’s disease. Arthritis Res Ther. 2017;19(1):235. DOI: 10.1186/s13075-017-1443-5.
  49. Safi R., Kallas R., Bardawil T. et al. Neutrophils contribute to vasculitis by increased release of neutrophil extracellular traps in Behçet’s disease. J Dermatol Sci. 2018;92(2):143–50. DOI: 10.1016/j. jdermsci.2018.08.010.
  50. Le Joncour A., Martos R., Loyau S. et al. Critical role of neutrophil extracellular traps (NETs) in patients with Behcet’s disease. Ann Rheum Dis. 2019;78(9):1274–82. DOI: 10.1136/annrheumdis-2018-214335.
  51. Chen J., Liu T., He J., Liu Y. Correspondence on ‘Critical role of neutrophil extracellular traps (NETs) in patients with Behcet’s disease’. Ann Rheum Dis. 2023;82(2):e48. DOI: 10.1136/annrheumdis2020–219472.
  52. Li L., Yu X., Liu J. et al. Neutrophil extracellular traps promote aberrant macrophages activation in Behçet’s disease. Front Immunol. 2021;11:590622. DOI: 10.3389/fimmu.2020.590622.
  53. Bettiol A., Becatti M., Silvestri E. et al. Neutrophil-mediated mechanisms of damage and in-vitro protective effect of colchicine in non-vascular Behçet’s syndrome. Clin Exp Immunol. 2021;206(3):410–21. DOI: 10.1111/cei.13664.
  54. Murad M., Low L., Davidson M. et al. Low density neutrophils are increased in patients with Behçet’s disease but do not explain differences in neutrophil function. J Inflamm (Lond). 2022;19(1):5. DOI: 10.1186/s12950-022-00302-1.
  55. Kawakami T., Yokoyama K., Ikeda T. et al. Presence of neutrophil extracellular traps in superficial venous thrombosis of Behçet’s disease. J Dermatol. 2022;49(7):741–5. DOI: 10.1111/1346-8138.16391.
  56. Neves F.S., Spiller F. Possible mechanisms of neutrophil activation in Behçet’s disease. Int Immunopharmacol. 2013;17(4):1206– 10. DOI:10.1016/j.intimp.2013.07.017.
  57. Решетняк Т.М., Чельдиева Ф.А., Нурбаева К.С. и др. Антифосфолипидный синдром: диагностика, механизм развития, вопросы терапии. Тромбоз, гемостаз и реология. 2020;(4):4– 21. DOI: 10.25555/THR.2020.4.0940.
  58. Lally L., Sammaritano L.R. Vasculitis in antiphospholipid syndrome. Rheum Dis Clin North Am. 2015;41(1):109–23. DOI: 10.1016/ j.rdc.2014.09.009.
  59. Knight J.S., Kanthi Y. Mechanisms of immunothrombosis and vasculopathy in antiphospholipid syndrome. Semin Immunopathol. 2022;44(3):347–62. DOI: 10.1007/s00281-022-00916-w.
  60. Нурбаева К.С., Решетняк Т.М., Лила А.М. Нетоз в патогенезе антифосфолипидного синдрома и системной красной волчанки. Современная ревматология. 2021;15(5):96–102. DOI:10. 14412/1996-7012-2021-5-96-102.
  61. Arvieux J., Jacob M.C., Roussel B. et al. Neutrophil activation by anti-beta 2 glycoprotein I monoclonal antibodies via Fc gamma receptor II. J Leukoc Biol. 1995;57(3):387–94. DOI: 10.1002/jlb.57.3.387.
  62. Girardi G., Berman J., Redecha P. et al. Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J Clin Invest. 2003;112(11):1644–54. DOI: 10.1172/JCI18817.
  63. Redecha P., Tilley R., Tencati M. et al. Tissue factor: a link between C5a and neutrophil activation in antiphospholipid antibody induced fetal injury. Blood. 2007;110(7):2423–31. DOI: 10.1182/blood-2007-01-070631.
  64. Leffler J., Stojanovich L., Shoenfeld Y. et al. Degradation of neutrophil extracellular traps is decreased in patients with antiphospholipid syndrome. Clin Exp Rheumatol. 2014;32(1):66–70.
  65. Yalavarthi S., Gould T.J., Rao A.N. et al. Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: a newly identified mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol. 2015;67(11):2990– 3003. DOI: 10.1002/art.39247.
  66. Meng H., Yalavarthi S., Kanthi Y. et al. In vivo role of neutrophil extracellular traps in antiphospholipid antibody-mediated venous thrombosis. Arthritis Rheumatol. 2017;69(3):655–67. DOI: 10.1002/art.39938.
  67. van der Linden M., van den Hoogen L.L., Westerlaken G.H.A. et al. Neutrophil extracellular trap release is associated with antinuclear antibodies in systemic lupus erythematosus and antiphospholipid syndrome. Rheumatology (Oxford). 2018;57(7):1228– 34. DOI: 10.1093/rheumatology/key067.
  68. Zha C., Zhang W., Gao F. et al. Anti-β2GPI/β2GPI induces neutrophil extracellular traps formation to promote thrombogenesis via the TLR4/MyD88/MAPKs axis activation. Neuropharmacology. 2018;138:140–50. DOI: 10.1016/j.neuropharm.2018.06.001.
  69. Stachowicz A., Zabczyk M., Natorska J. et al. Differences in plasma fibrin clot composition in patients with thrombotic antiphospholipid syndrome compared with venous thromboembolism. Sci Rep. 2018;8(1):17301. DOI: 10.1038/s41598-018-35034-x.
  70. You Y., Liu Y., Li F. et al. Anti-β2GPI/β2GPI induces human neutrophils to generate NETs by relying on ROS. Cell Biochem Funct. 2019;37(2):56–61. DOI: 10.1002/cbf.3363.
  71. Lu Y., Dong Y., Zhang Y. et al. Antiphospholipid antibodyactivated NETs exacerbate trophoblast and endothelial cell injury in obstetric antiphospholipid syndrome. J Cell Mol Med. 2020;24(12):6690–703. DOI: 10.1111/jcmm.15321.
  72. Hell L., Lurger K., Mauracher L.M. et al. Altered platelet proteome in lupus anticoagulant (LA)-positive patients-protein disulfide isomerase and NETosis as new players in LA-related thrombosis. Exp Mol Med. 2020;52(1):66–78. DOI: 10.1038/s12276-019-0358-4. 73. Zuo Y., Yalavarthi S., Gockman K. et al. Anti-neutrophil extracellular trap antibodies and impaired neutrophil extracellular trap degradation in antiphospholipid syndrome. Arthritis Rheumatol. 2020;72(12):2130–5. DOI: 10.1002/art.41460.
  73. Mauracher L.M., Krall M., Roiß J. et al. Neutrophil subpopulations and their activation potential in patients with antiphospholipid syndrome and healthy individuals. Rheumatology (Oxford). 2021;60(4):1687–99. DOI: 10.1093/rheumatology/keaa532.
  74. Mazetto B.M., Hounkpe B.W., da Silva Saraiva S. et al. Association between neutrophil extracellular traps (NETs) and thrombosis in antiphospholipid syndrome. Thromb Res. 2022;214:132– 7. DOI: 10.1016/j.thromres.2022.05.001.
  75. Li C., Zuo Y., Zhang S. et al. Additional risk factors associated with thrombosis and pregnancy morbidity in a unique cohort of antiphospholipid antibody-positive patients. Chin Med J (Engl). 2022;135(6):658–64. DOI: 10.1097/CM9.0000000000001964.
  76. Ali R. A., Estes S. K., Gandhi A. A. et al. Defibrotide inhibits antiphospholipid antibody-mediated neutrophil extracellular trap formation and venous thrombosis. Arthritis Rheumatol. 2022;74(5):902–7. DOI: 10.1002/art.42017.

Биографии авторов

Камила Сериковна Нурбаева , ФГБНУ «Научно-исследовательский институт ревматологии имени В.А. Насоновой»; Россия, 115522 Москва, Каширское шоссе, 34А; ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Министерства здравоохранения Российской Федерации; Россия, 125993 Москва, ул. Баррикадная, 2/1, стр. 1;

Нурбаева Камила Сериковна — младший научный сотрудник лаборатории тромбовоспаления ФГБНУ НИИР им. В.А. Насоновой; аспирант кафедры ревматологии ФГБОУ ДПО РМАНПО. E-mail: camila9@mail.ru. ORCID: https://orcid.org/0000-0001-6685-7670. Scopus Author ID: 57210258977.

Татьяна Магомедалиевна Решетняк , ФГБНУ «Научно-исследовательский институт ревматологии имени В.А. Насоновой»; Россия, 115522 Москва, Каширское шоссе, 34А; ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Министерства здравоохранения Российской Федерации; Россия, 125993 Москва, ул. Баррикадная, 2/1, стр. 1;

Решетняк Татьяна Магомедалиевна — д. м. н., профессор, зав. лабораторией тромбовоспаления ФГБНУ НИИР им. В.А. Насоновой; профессор кафедры ревматологии ФГБОУ ДПО РМАНПО. E-mail: t_reshetnyak@yahoo.com. ORCID: https://orcid.org/0000-0003-3552-2522. Scopus Author ID: 6603448950. Researcher ID: T-986-2018.

Татьяна Андреевна Лисицына , ФГБНУ «Научно-исследовательский институт ревматологии имени В.А. Насоновой»; Россия, 115522 Москва, Каширское шоссе, 34А;

Лисицына Татьяна Андреевна — д. м. н., ведущий научный сотрудник лаборатории тромбовоспаления ФГБНУ НИИР им. В.А. Насоновой. E-mail: talisitsyna@rambler.ru. ORCID: https://orcid.org/0000-0001-9437-406X. Scopus Author ID: 6602344981.

Александр Михайлович Лила , ФГБНУ «Научно-исследовательский институт ревматологии имени В.А. Насоновой»; Россия, 115522 Москва, Каширское шоссе, 34А; ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Министерства здравоохранения Российской Федерации; Россия, 125993 Москва, ул. Баррикадная, 2/1, стр. 1;

Лила Александр Михайлович — д. м. н., профессор, член-корр. РАН, директор ФГБНУ НИИР им. В.А. Насоновой; зав. кафедрой ревматологии ФГБОУ ДПО РМАНПО. E-mail: amlila@mail.ru. ORCID: https:// orcid.org/0000-0002-6068-3080. Scopus Author ID: 6602550827.

Евгений Львович Насонов , ФГБНУ «Научно-исследовательский институт ревматологии имени В.А. Насоновой»; Россия, 115522 Москва, Каширское шоссе, 34А; ФГАОУ ВО Первый Московский государственный медицинский университет имени И.М. Сеченова Министерства здравоохранения Российской Федерации (Сеченовский Университет); Россия, 119991 Москва, ул. Трубецкая, 8, стр. 2

Насонов Евгений Львович — д. м. н., профессор, академик РАН, научный руководитель ФГБНУ НИИ ревматологии им. В.А. Насоновой; профессор кафедры внутренних, профессиональных болезней и ревматологии ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет). E-mail: nasonov@irramn.ru. ORCID: https://orcid.org/0000-0002-1598-8360. Scopus Author ID: 7102614711.

Ключевые слова

нейтрофилы, нетоз, тромбоз, антифосфолипидный синдром, АФС, болезнь Бехчета

Опубликован
2023-09-22