Реологические свойства крови: механизмы изменений

УДК 578.834:616.24-002.6

  • Алексей Васильевич Муравьев ФГБОУ ВО «Ярославский государственный педагогический университет имени К.Д. Ушинского»; Россия, 150000 Ярославль, ул. Республиканская, 108/1;
  • Ирина Александровна Тихомирова ФГБОУ ВО «Ярославский государственный педагогический университет имени К.Д. Ушинского»; Россия, 150000 Ярославль, ул. Республиканская, 108/1;
  • Александр Васильевич Приезжев ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова»; Россия, 119234 Москва, Ленинские горы, 1
  • Андрей Егорович Луговцов ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова»; Россия, 119234 Москва, Ленинские горы, 1
Ключевые слова: реология крови, гематокрит, вязкость плазмы, деформируемость, агрегация, эритроциты, механизмы

Аннотация

Резюме. Условием нормальной жизнедеятельности организма является эффективный транспорт и доставка в органы и их тканевые микрорайоны кислорода и всего спектра веществ, необходимых для метаболизма. Это достигается скоординированной работой всех систем организма и в том числе крови, которая обладает уникальной текучестью и тем самым эффективно решает транспортные задачи. Интегральной реологической характеристикой крови является ее вязкость. Величина последней определяется рядом ключевых параметров, таких как вязкость плазмы, показатель гематокрита, напряжение и скорости сдвига, агрегация и деформируемость эритроцитов. Изменение этих 5 основных реологических характеристик крови и эритроцитов определяет текучесть крови и ее транспортный потенциал. В обзоре рассмотрены возможные причины и механизмы изменений указанного выше комплекса гемореологических характеристик или отдельных элементов как в норме, так и при патологии.

Для цитирования: Муравьев А.В., Тихомирова И.А., Приезжев А.В., Луговцов А.Е. Реологические свойства крови: механизмы изменений. Тромбоз, гемостаз и реология. 2024;(1):4–13.

Литература

  1. De Hert S. Physiology of hemodynamic homeostasis. Best Pract Res Clin Anaesthesiol. 2012;26(4):409–19. DOI: 10.1016/j. bpa.2012.10.004.
  2. Lake-Bakaar G., Ahmed M., Evenson A. et al. Hagen-Poiseuille’s law: the link between cirrhosis, liver stiffness, portal hypertension and hepatic decompensation. World J Hepatol. 2015;7(1):28– 32. DOI: 10.4254/wjh.v7.i1.28.
  3. Popel A.S., Johnson P.C. Microcirculation and hemorheology. Annu Rev Fluid Mech. 2005;37:43–69. DOI: 10.1146/annurev. fluid.37.042604.133933.
  4. Чернух А.М. Воспаление. М.: Медицина, 1979. 448 с.
  5. Муравьев А.В., Чепоров С.В. Гемореология (экспериментальные и клинические аспекты реологии крови). Ярославль: ЯГПУ, 2009. 178 с.
  6. Baskurt O.K., Meiselman H.J. Blood rheology and hemodynamics. Semin Thromb Hemost. 2003;29(5):435–50. DOI: 10.1055/ s-2003-44551.
  7. Salazar Vázquez B.Y., Martini J., Chávez Negrete A. et al. Microvascular benefits of increasing plasma viscosity and maintaining blood viscosity: counterintuitive experimental findings. Biorheo­ logy. 2009;46(3):167–79. DOI: 10.3233/BIR-2009-0539.
  8. Clifford P. S. Local control of blood flow. Adv Physiol Educ. 2011;35(1):5–15. DOI: 10.1152/advan.00074.2010.
  9. Sherwood J.M., Holmes D., Kaliviotis E., Balabani S. Spatial distributions of red blood cells significantly alter local haemodynamics. PLoS One. 2014;9(6):e100473. DOI: 10.1371/journal.pone.0100473.
  10. CabelM.,MeiselmanH.J.,PopelA.S.,JohnsonP.C.Contributionof red blood cell aggregation to venous vascular resistance in skeletal muscle. Ann J Physiol. 1997;272(2 Pt 2): H1020–H1032. DOI: 10.1152/ ajpheart.1997.272.2.H1020.
  11. StoltzJ.F.,DonnerM.,MullerS.,LarcanA.Hemorheologyinclinical practice. Introduction to the notion of hemorheologic profile. J Mal Vasc. 1991;16(3):261–70. (In French).
  12. Галенок В.А., Гостинская Е.В., Диккер В.Е. Гемореология при нарушениях углеводного обмена. Новосибирск: Наука, 1987. 258 с.
  13. Cho Y.I., Cho D.J. Hemorheology and microvascular disorders. Korean Circ J. 2011;41(6):287–95. DOI: 10.4070/kcj.2011.41.6.287.
  14. Stark H., Schuster S. Comparison of various approaches to calculating the optimal hematocrit in vertebrates. J Appl Physiol (1985). 2012;113(3):355–67. DOI: 10.1152/japplphysiol. 00369.2012.
  15. Kwaan H.C., Wang J. Hyperviscosity in polycythemia vera and other red cell abnormalities. Semin Thromb Hemost. 2003;29(5):451– 8. DOI: 10.1055/s-2003-44552.
  16. Messmer K. Hemodilution. Surg Clin North Am. 1975;55(3):659–78. DOI: 10.1016/s0039-6109(16)40641-9.
  17. AlexyT.,PaisE.,ArmstrongJ.K.etal.Rheologicbehaviorofsickle and normal red blood cell mixtures in sickle plasma: implications for transfusion therapy. Transfusion. 2006;46(6):912–18. DOI: 10.1111/j.1537-2995.2006.00823.x.
  18. Katanov D., Gompper G., Fedosov D.A. Microvascular blood flow resistance: role of red blood cell migration and dispersion. Micro­ vasc Res. 2015;99:57–66. DOI: 10.1016/j.mvr.2015.02.006.
  19. Simmonds M.J. Detterich J.A., Connes P. Nitric oxide, vasodilation and the red blood cell. Biorheology. 2014;51(2–3):121–34. DOI: 10.3233/BIR-140653.
  20. Yin X, Zhang J. An improved bounce-back scheme for complex boundary conditions in lattice Boltzmann method. J Comput Phys. 2012;231(11):4295–303. DOI: 10.1016/j.jcp. 2012.02.014.
  21. Salazar Vázquez B.Y., Martini J., Chávez Negrete A. Cardiovascular benefits in moderate increases of blood and plasma viscosity surpass those associated with lowering viscosity: experimental and clinical evidence. Clin Hemorheol Microcirc. 2010;44(2):75–85. DOI: 10.3233/CH-2010-1261.
  22. Hightower C.M., Vázquez S., Woo Park S. et al. Integration of cardiovascular regulation by the blood/endothelium cell-free layer. Wiley Interdiscip Rev Syst Biol Med. 2011;3(4):458–70. DOI: 10.1002/ wsbm.150.
  23. Sridharan M., Bowles E. A., Richards J. P. et al. Prostacyclin receptor-mediated ATP release from erythrocytes requires the voltage-dependent anion channel. Am J Physiol Heart Circ Physiol. 2012;302(3): H553–H559. DOI: 10.1152/ajpheart.00998.2011.
  24. Ernst E., Matrai A., Aschenbrenner E. Blood rheology in athletes. J Sports Med Phys Fitness. 1985;25(4):207–10.
  25. Brun J.F., Varlet-Marie E., Romain A.J. et al. Exercise hemorheology: moving from old simplistic paradigms to a more complex picture. Clin Hemorheol Microcirc. 2013;55(1):15–27. DOI: 10.3233/ CH-131686.
  26. Connes P., Simmonds M. J., Brun J. F., Baskurt O. K. Exercise hemorheology: classical data, recent findings and unresolved issues. Clin Hemorheol Microcirc. 2013;53(1–2):187–99. DOI: 10.3233/ CH-2012-1643.
  27. Paul L., Jeemon P., Hewitt J. et al. Hematocrit predicts long-term mortality in a nonlinear and sex-specific manner in hypertensive adults. Hypertension. 2012;60(3):631–8. DOI: 10.1161/HYPERTEN-SIONAHA.112.191510.
  28. Jae S.Y., Kurl S., Laukkanen J.A. et al. Higher blood hematocrit predicts hypertension in men. J Hypertens. 2014;32(2):245–50. DOI: 10.1097/HJH.0000000000000029.
  29. Letcher R.L., Chien S., Pickering T.G., Laragh J.H. Elevated blood viscosity in patients with borderline essential hypertension. Hypertension. 1983;5(5):757–62. DOI: 10.1161/01.hyp. 5.5.757.
  30. Gillen C.M., Lee R., Mack G.W. et al. Plasma volume expansion in humans after a single intense exercise protocol. J Appl Physiol(1985). 1991;71(5):1914–20. DOI: 10.1152/jappl. 1991.71.5.1914.
  31. Rampling M.W. Compositional properties of blood. In: Handbook of hemorheology and hemodynamics. Eds. O.K. Baskurt, M.R. Hardeman, M.W. Rampling. Amsterdam: IOS Press, 2007. 34–44.
  32. Késmárky G., Kenyeres P., Rábai M., Tóth K. Plasma viscosity: a forgotten variable. Clin Hemorheol. Microcirc. 2008;39(1–4):243–6.
  33. Баев В.М., Шарапова Н.В. Вязкость крови как регулятор уровня артериального давления. Тромбоз, гемостаз и реоло­гия. 2011;(4):10–4.
  34. Chien S. Blood rheology in myocardial infarction and hypertension. Biorheology. 1986;23(6):633–53. DOI: 10.3233/bir-1986-23614.
  35. Ajmani R.S. Hypertension and hemorheology. Clin Hemorheol Microcirc. 1997;17(6):397–420.
  36. Lowe G.D. Blood rheology in vitro and in vivo. Baillieres Clin Haematol. 1987;1(3):597–636. DOI: 10.1016/s0950-3536(87)80018-5.
  37. Martini J., Carpentier B., Chávez Negrete A. et al. Beneficial effects due to increasing blood and plasma viscosity. Clin Hemorheol Microcirc. 2006;35(1–2):51–7.
  38. Tsai A. G., Acero C., Nance P. R. et al. Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion. Am J Physiol Heart Circ Physiol. 2005;288(4):H1730–H1739. DOI: 10.1152/ajpheart.00998.2004.
  39. CabralesP.,TsaiA.G.,IntagliettaM.Microvascularpressureand functional capillary density in extreme hemodilution with lowand high-viscosity dextran and a low-viscosity Hb-based O2 carrier. Am J Physiol Heart Circ Physiol. 2004;287(1):H363–H373. DOI: 10.1152/ajpheart.01039.2003.
  40. Salazar Vázquez B.Y., Cabrales P., Tsai A.G., Intaglietta M. Nonlinear cardiovascular regulation consequent to changes in blood viscosity. Clin Hemorheol Microcirc. 2011;49(1–4):29–36. DOI: 10.3233/ CH-2011-1454.
  41. Meiselman H.J., Neu B., Rampling M.W., Baskurt O.K. RBC aggregation: laboratory data and models. Indian J Exp Biol. 2007;45(1):9–17.
  42. BishopJ.J.,NanceP.R.,PopelA.S.etal.Relationshipbetweenerythrocyte aggregate size and flow rate in skeletal muscle venules. Am J Physiol Heart Circ Physiol. 2004;286(1):H113–H120. DOI: 10.1152/ajpheart.00587.2003.
  43. Lee B.K., Durairaj A., Mehra A. et al. Hemorheological abnormalities in stable angina and acute coronary syndromes. Clin Hemorheol Microcirc. 2008;39(1–4):43–51.
  44. Zilberman-Kravits D., Harman-Boehm I., Shuster T., Meyerstein N. Increased red cell aggregation is correlated with HbA1C and lipid levels in type 1 but not type 2 diabetes. Clin Hemorheol Microcirc. 2006;35(4):463–71.
  45. OngP.K.,NamgungB.,JohnsonP.C.,KimS.Effectoferythrocyte aggregation and flow rate on cell-free layer formation in arterioles. Am J Physiol Heart Circ Physiol. 2010;298(6):H1870–H1878. DOI: 10.1152/ajpheart.01182.2009.
  46. Baskurt O.K., Meiselman H.J. Hemodynamic effects of red blood cell aggregation. Indian J Exp Biol. 2007;45(1):25–31.
  47. Alonso C., Pries A. R., Gaehtgens P. Time-dependent rheological behavior of blood at low shear in narrow vertical tubes. Am J Physiol. 1993;265(2 Pt 2):H553–H561. DOI: 10.1152/ ajpheart.1993.265.2.H553.
  48. Lipowsky H.H. Microvascular rheology and hemodynamics. Microcirculation. 2005;12(1):5–15. DOI: 10.1080/10739680590894966. Cokelet G. R., Goldsmith H. L. Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rates. Circ Res. 1991;68(1):1–17. DOI: 10.1161/01. res.68.1.1.
  49. Barshtein G., Ben-Ami R., Yedgar S. Role of red blood cell flow behavior in hemodynamics and hemostasis. Expert Rev Cardiovasc Ther. 2007;5(4):743–52. DOI: 10.1586/14779072.5.4.743.
  50. Meiselman H.J. Red blood cell aggregation: 45 years being curious. Biorheology. 2009;46(1):1–19. DOI: 10.3233/BIR-2009-0522. Nash G.B., Meiselman H.J. Effect of dehydration on the viscoelastic behavior of red cells. Blood Cells. 1991;17(3):517–25.
  51. Cilek N., Ugurel E., Goksel E., Yalcin O. Signaling mechanisms in red blood cells: a view through the protein phosphorylation and deformability. J Cell Physiol. 2023 Feb 7. DOI: 10.1002/jcp. 30958. Online ahead of print.
  52. Mohandas N., Gallagher P.G. Red cell membrane: past, present, and future. Blood. 2008;112(10):3939–48. DOI: 10.1182/ blood-2008-07-161166.
  53. Dupire J., Socol M., Viallat A. Full dynamics of a red blood cell in shear flow. Proc Natl Acad Sci U S A. 2012;109(51):20808–13. DOI: 10.1073/pnas.1210236109.
  54. GuoQ., DuffyS.P., MatthewsK. et al. Microfluidic analysis of red blood cell deformability. J Biomech. 2014;47(8):1767–76. DOI: 10.1016/j.jbiomech.2014.03.038.
  55. Mohandas N., Chasis J.A., Shohet S.B. The influence of membrane skeleton on red cell deformability, membrane material properties, and shape. Semin Hematol. 1983;20(3):225–42.
  56. Neu B., Sowemimo-Coker S.O., Meiselman H.J. Cell-cell affinity of senescent human erythrocytes. Biophys J. 2003;85(1):75–84. DOI: 10.1016/S0006-3495(03)74456-7.
  57. Bazanovas A.N., Evstifeev A.I., Khaiboullina S.F. et al. Erythrocyte: a systems model of the control of aggregation and deformability. Biosystems. 2015;131:1–8. DOI: 10.1016/j.biosystems.2015.03.003.
  58. Meram E., Yilmaz B.D., Bas C. et al. Shear stress-induced improvement of red blood cell deformability. Biorheology. 2013;50(3– 4):165–76. DOI: 10.3233/BIR-130637.
  59. Муравьев А.В., Ройтман Е.В., Тихомирова И.А. и др. Деформируемость эритроцитов: основные механизмы срочной адаптации. Тромбоз, гемостаз и реология. 2013;(3):4–17.
  60. Toth K., Kesmarky G. Clinical significance of hemorheological alterations. In: Hand book of hemorheology and hemodynamics
  61. Eds. O.K. Baskurt, M.R. Hardeman, M.W. Rampling, H.J. Meiselman. Amsterdam: IOS Press, 2007. 392–432.
  62. Nader E., Nougier C., Boisson C. et al. Increased blood viscosity and red blood cell aggregation in patients with COVID-19. Am J Hematol. 2022;97(3):283–92. DOI: 10.1002/ajh.26440.
  63. Farber P.L. Can erythrocytes behavior in microcirculation help the understanding the physiopathology and improve prevention and treatment for covid-19? Clin Hemorheol Microcirc. 2021;78(1):41–7. DOI: 10.3233/CH-201082.
  64. Renoux C., Fort R., Nader E. et al. Impact of COVID-19 on red blood cell rheology. Br J Haematol. 2021;192(4):e108-e111. DOI: 10.1111/ bjh.17306.
  65. Narla J., Mohandas N. Red cell membrane disorders. Int J Lab Hematol. 2017;39 Suppl 1:47–52. DOI: 10.1111/ijlh.12657.
  66. George A., Pushkaran S., Li L.et al. Altered phosphorylation of cytoskeleton proteins in sickle red blood cells: the role of protein kinase C, Rac GTPases, and reactive oxygen species. Blood Cells Mol Dis. 2010;45(1):41–5. DOI: 10.1016/j.bcmd.2010.02.006.
  67. Grau M., Pauly S., Ali J. et al. RBC-NOS-dependent S-nitrosylation of cytoskeletal proteins improves RBC deformability. PLoS One. 2013;8(2):e56759. DOI: 10.1371/journal.pone.0056759.
  68. Chien S., Lipowsky H. H. Correlation of hemodynamics in macrocirculation and microcirculation. Int J Microcirc Clin Exp. 1982;1(4):351–65.
  69. Sprague R.S., Ellsworth M.L. Erythrocyte-derived ATP and perfusion distribution: role of intracellular and intercellular communication. Microcirculation. 2012;19(5):430–9. DOI: 10.1111/j.15 49-8719.2011.00158.x.
  70. Ройтман Е.В., Раскуражев А.А., Лагода О.В. и др. Эндотелиальная дисфункция, агрегация тромбоцитов и реологические свойства крови у курильщиков. Тромбоз, гемостаз и реоло­ гия. 2022;(2):13–22. DOI: 10.25555/THR.2022.2.1015.
  71. Mortensen S.P., Saltin B. Regulation of the skeletal muscle blood flow in humans. Exp Physiol. 2014;99(12):1552–8. DOI: 10.1113/expphysiol. 2014.081620.
  72. AdderleyS.P., ThuetK.M., SridharanM.et al. Identification of cytosolic phosphodiesterases in the erythrocyte: a possible role for PDE5. Med Sci Monit. 2011;17(5): CR241–CR247. DOI: 10.12659/msm.881763.
  73. Ulker P., Sati L., Celik-Ozenci C. et al. Mechanical stimulation of nitric oxide synthesizing mechanisms in erythrocytes. Biorheology. 2009;46(2):121–32. DOI: 10.3233/BIR-2009-0532.
  74. CahalanS.M.,LukacsV.,RanadeS.S.etal.Piezo1linksmechanical forces to red blood cell volume. Elife. 2015;4:e07370. DOI: 10.7554/eLife.07370.
  75. Rogers S., Lew V.L. PIEZO1 and the mechanism of the long circulatory longevity of human red blood cells. PLoS Comput Biol. 2021;17(3): e1008496. DOI: 10.1371/journal.pcbi.1008496.
  76. Kuck L., Peart J.N., Simmonds M.J. Piezo1 regulates shear-dependent nitric oxide production in human erythrocytes. Am J Physiol Heart Circ Physiol. 2022;323(1): H24–H37. DOI: 10.1152/ajpheart.00185.2022.
  77. Ellis C.G., Milkovich S., Goldman D. What is the efficiency of ATP signaling from erythrocytes to regulate distribution of O(2) supply within the microvasculature? Microcirculation. 2012;19(5):440– 50. DOI: 10.1111/j.1549-8719.2012.00196.x.

Биографии авторов

Алексей Васильевич Муравьев , ФГБОУ ВО «Ярославский государственный педагогический университет имени К.Д. Ушинского»; Россия, 150000 Ярославль, ул. Республиканская, 108/1;

Муравьев Алексей Васильевич — д. б. н., профессор кафедры медико‐биологических основ спорта ФГБОУ ВО ЯГПУ им. К.Д. Ушинского. E‐mail: alexei.47@mail.ru. ORCID: https://orcid.org/0000‐0002‐5502‐9164.

Ирина Александровна Тихомирова , ФГБОУ ВО «Ярославский государственный педагогический университет имени К.Д. Ушинского»; Россия, 150000 Ярославль, ул. Республиканская, 108/1;

Тихомирова Ирина Александровна — д. б. н., профессор, зав. кафедрой медицины ФГБОУ ВО ЯГПУ им. К.Д. Ушинского. ORCID: https://orcid.org/0000‐0001‐9521‐4017.

Александр Васильевич Приезжев , ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова»; Россия, 119234 Москва, Ленинские горы, 1

Приезжев Александр Васильевич — к.ф‐м.н., доцент физического факультета ФГБОУ ВО МГУ им. М.В. Ломоносова. E‐mail: avp2@mail.ru. ORCID: https://orcid.org/0000‐0003‐4216‐7653.

Андрей Егорович Луговцов , ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова»; Россия, 119234 Москва, Ленинские горы, 1

Луговцов Андрей Егорович — к.ф‐м.н., старший научный сотрудник физического факультета ФГБОУ ВО МГУ им. М.В. Ломоносова. E‐mail: anlug@biomedphotonics.ru. ORCID: https://orcid.org/0000‐0001‐5222‐8267.

Ключевые слова

реология крови, гематокрит, вязкость плазмы, деформируемость, агрегация, эритроциты, механизмы

Опубликован
2024-04-07